Scientific Information Research
Keywords
sentiment analysis, emoticon feature, online public opinion, multi-feature fusion
Abstract
[Purpose/significance]In order to improve the effect of sentiment analysis of online public opinion,a multi-feature fusion sentiment analysis method integrating emoticon feature is proposed.[Method/process]After preprocessing,dictionary feature,emoticon feature and vector feature are combined to study the emotional orientation of sina Weibo data of a public health emergency by using support vector machine,and the effect of different feature construction methods is compared.[Result/conclusion]Emoticon feature has a significant impact on the sentiment analysis effect of online public opinion.Taking emoticon feature as one of the feature types of sentiment analysis and incorporating it into dictionary feature and vector feature can significantly improve the sentiment analysis effect of online public opinion.
First Page
13
Digital Object Identifier (DOI)
10.19809/j.cnki.kjqbyj.2020.04.002
Recommended Citation
JIN, Chun-yan; MU, Dong-mei; WANG, Ping; SHAO, Qi; and YANG, Xin-yu
(2020)
"Research on Sentiment Analysis Method Integrating Emoticon Feature of Online Public Opinion,"
Scientific Information Research: Vol. 2:
Iss.
4, Article 2.
DOI: 10.19809/j.cnki.kjqbyj.2020.04.002
Available at:
https://eng.kjqbyj.com/journal/vol2/iss4/2
Reference
[1] 刘毅.网络舆情研究概论[M].天津:天津人民出版社,2007.
[2] 姚沂婕,安宏玉.网络表情符号分析[J].校园心理,2011,9(05):336-337.
[3] 张琰,黄霁风.基于PMI的豆瓣电影评论文本情感分析[J].现代计算机,2019(12):37-40.
[4] CORREDOR P,FERRER E,SANTAMARIA R.Investor sentiment effect in stock markets:stock characteristics or country-Specific factors?[J].International review of economics and finance,2013,27(06):572-591.
[5] BURNAP P,GIBSON R,SLOAN L,et al.140 characters to victory?:using Twitter to predict the UK 2015 general election[J].Electoral studies,2016(41):230-233.
[6] 刘超然.在线新闻网民评论情感倾向性分析及可视化研究[D].哈尔滨:哈尔滨工业大学,2018.
[7] 甘如饴.基于doc2vec和SVM的舆情情感分析系统的研究与设计[D].北京:北京邮电大学,2017.
[8] FENG Z.Hot News mining and public opinion guidance analysis based on sentiment computing in network social media[J].Personal and ubiquitous computing,2019,23(03-04):373-381.
[9] 宋沛玉.面向中文微博情感分析的多特征融合方法研究[D].广州:广东工业大学,2018.
[10] 杨爽,陈芬.基于SVM多特征融合的微博情感多级分类研究[J].数据分析与知识发现,2017,1(02):73-79.
[11] 王汝娇,姬东鸿.基于卷积神经网络与多特征融合的Twitter情感分类方法[J].计算机工程,2018,44(02):210-219.
[12] 王根生,黄学坚,闵潞.多元特征融合的GRU神经网络文本情感分类模型[J].小型微型计算机系统,2019,40(10):2130-2138.
[13] 余本功,曹雨蒙,陈杨楠,等.基于nLD-SVM-RF的短文本分类研究[J].数据分析与知识发现,2020,4(01):111-120.
[14] ZHAO J C,DONG L,WU J J,et al.MoodLens:An emotion-based sentiment analysis system for Chinese tweets[C]//Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining.New York:ACM,2012:1528-1531.
[15] 阳庆玲,郑志伟,邱佳玲,等.基于表情符号的文本情感分析研究[J].现代预防医学,2019,46(09):1537-1540.
[16] 安璐,吴林.融合主题与情感特征的突发事件微博舆情演化分析[J].图书情报工作,2017,61(15):120-129.
[17] 张鹏,崔彦琛,兰月新,等.基于扎根理论与词典构建的微博突发事件情感分析与舆情引导策略[J].现代情报,2019,39(03):122-131,143.
[18] 杨立月,王移芝.微博情感分析的情感词典构造及分析方法研究[J].计算机技术与发展,2019,29(02):13-18.
[19] 陈曦,朱小栋,高广阔,等.基于混合向量模型的中文评论情感分析[J].计算机工程,2020,46(01):309-314.
[20] 贾晓婷,王名扬,曹宇.结合Doc2Vec与改进聚类算法的中文单文档自动摘要方法研究[J].数据分析与知识发现,2018,2(02):86-95.
[21] 陈红琳,魏瑞斌,张玮,等.基于共词分析的国内文本情感分析研究[J].现代情报,2019,39(06):91-101.
[22] 张震.基于多特征融合的藏语微博的情感分析[D].北京:中央民族大学,2017.
[23] 汪岿,刘柏嵩.文本分类研究综述[J].数据通信,2019(03):37-47.
[24] T FAWCETT.An Introduction to ROC Analysis[J].Pattern recognition letters,2006,27(8):861-874.
[25] 微博数据中心.2018微博用户发展报告[EB/OL].(2019-03-15)[2019-05-08].https://data.weibo.com/report/reportDetail?id=433.
[26] MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representations of wordsand phrases and their compositionality[J].Advances in neural information processing systems,2013(26):3111-3119.
[27] 陈芬,高小欢,彭玥,等.融合文本倾向性分析的微博意见领袖识别[J].数据分析与知识发现,2019,3(11):120-128.
[28] 王珏.语气词的功能模式试论[J].中国语言学报,2016(17):29-47.
[29] 敦欣卉.基于微博的药物评论细粒度情感分析[D].长春:吉林大学,2018.