Scientific Information Research
Keywords
Weibo group events, heat, influence factors, DEMATEL
Abstract
[Purpose/significance]Identifying the influencing factors of the heat of Weibo group events is helpful to quickly understand,master the development of Weibo group events and make timely prevention and control treatment.[Method/process]Using Delphi method and questionnaire to construct the influence factor system of Weibo group events heat,then the correlation analysis is carried out by using DEMATEL method to identify the main influencing factors,and finally the identification results are tested by sensitivity analysis method.[Result/conclusion]The index system of influencing factors affecting the heat of Weibo group events is constructed,and combined with the data analysis diagram,the main influencing factors affecting the heat of Weibo group events are identified.
First Page
44
Digital Object Identifier (DOI)
10.19809/j.cnki.kjqbyj.2020.04.005
Recommended Citation
DENG, Chun-lin; JIANG, Liu; LONG, Zheng-fan; JIA, Yi; and ZHOU, Shu-yang
(2020)
"Identification of Influencing Factors of Mass Events Heat on Weibo,"
Scientific Information Research: Vol. 2:
Iss.
4, Article 5.
DOI: 10.19809/j.cnki.kjqbyj.2020.04.005
Available at:
https://eng.kjqbyj.com/journal/vol2/iss4/5
Reference
[1] 李蕾.微博群体性事件成因及其控制策略研究[J].甘肃科技纵横,2013,42(08):118-120,123.
[2] 祁晓菲.微博时代群体性突发事件治理研究[D].青岛:中国石油大学(华东),2014.
[3] 折江虹.微博群体性事件研究[D].太原:山西大学,2015.
[4] KARATZOGIANNI A,The politics of cyberconflict[J].Politics,2004,24(01):46-55..
[5] 王长宁,陈维勤,许浩.对微博舆情热度监测及预警的指标体系的研究[J].计算机与现代化,2013(01):126-129.
[6] 梁昌明,李冬强.基于新浪热门平台的微博热度评价指标体系实证研究[J].情报学报,2015,34(12):1278-1283.
[7] 苏国强,刘芊汝,薛信朋,等.面向舆情大数据的突发事件网络民意热度评价研究[J].内江科技,2017,38(07):74-75.
[8] 黄怡璇.基于DEMATEL突发事件网络舆情热度评价影响因素研究[D].绵阳:西南科技大学,2018.
[9] 孙悦,张向先,韩晓宏.在线医疗社区知识贡献行为的关键影响因素识别与分析[J].图书情报工作,2018,62(11):43-52.
[10] 王益成,王萍,王美月.基于SVM的网络信息茧房层次敏感影响因素识别研究[J].情报资料工作,2019,40(06):90-97.
[11] 张虹,钟华,赵兵.基于数据挖掘的网络论坛话题热度趋势预报[J].计算机工程与应用,2007(31):159-161,174.
[12] WARTENA C,BRUSSEE R.Topic detection by clustering keywords[C]//Proceedings of the 19th International Workshop on Database and Expert Systems Application.Washington D C,2008:54-58.
[13] PAL A,COUNTS S.Identifying topical authorities in microblogs[C]//Proceedings of the Forth International Conference on Web Search and Web Data Mining.Hong Kong:ACM,2011:9-12.
[14] 何炎祥,刘健博,刘楠,等.基于改进人口模型的微博话题趋势预测[J].通信学报,2015,36(04):5-12.
[15] 郑志蕴,江国林,张行进,等.基于多特征的热门微博预测算法研究[J].小型微型计算机系统,2017,38(03):494-498.
[16] 覃玉冰,邓春林,杨柳.基于皮尔逊相关系数的网络舆情评估指标体系构建研究[J].情报探索,2018(10):15-19.
[17] 李文杰,化存才,何伟全,等.网络舆情事件的灰色预测模型及案例分析[J].情报科学,2013,31(12):51-56.
[18] 庞彦军,刘开第,张博文.综合评价系统客观性指标权重的确定方法[J].系统工程理论与实践,2001(08):37-42.
[19] 邢雨晴,刘红翠,周瑞,等.微博信息传播模式及其应用的实证研究的文献综述[J].中国外资,2012(18):275-277.
[20] 马尔科姆・格拉德威尔(美).引爆点:如何制造流行[M].钱清,覃爱冬(译).北京:中信出版社,2009.
[21] 杨印生.经济系统定量分析方法[M].长春:吉林科学技术出版社,2001.
[22] TZENG G H,CHIANG C H,LI C W.Evaluating intertwined effects in E-learning programs:A novel hybrid MCDM model based on factor analysis and DEMATEL[J].Expert systems with applications,2007,32(04):1028-1044.