Scientific Information Research
Keywords
biomimetics; highly cited paper; bibliometrics; mapping knowledge domains
Abstract
[Purpose/significance]The bibliometric study on highly cited papers in biomimetics has been carried out in the current paper to reveal the international research status of biomimetics,to track the latest research hotspots of the field,and explore the future development trend of the discipline,so as to provide decision-making reference for the government to develop biomimetics research and education.[Method/process]Based on the Web of Science database,the highly cited papers in biomimetics from 2000 to 2019 have been selected as samples,and the bibliometric methods combined with CiteSpace visualization software have been applied to evaluate the research level of different countries and universities,and demonstrate the paper distribution among the source journals and research areas.At the same time, the research hotspots were further tracked and analyzed through the mapping knowledge domains.[Result/conclusion]The results showed that in recent ten years,the global biomimetic research activities have been growing steadily,and China has occupied a leading position with the number of highly cited papers ranking first in the world since 2015. However,there is still a gap in the level and influence of the papers between China and the United States.The current development of biomimetic research presents a trend of cross-discipline integration,and the global research hotspots mainly concentrate in biomedical science,additive manufacturing,bioinspired surface,smart material,nano-building block,and flexible electronics etc.With the support of the above frontier technologies,the biomimetics discipline will also step into the golden period of development in the next ten years.
First Page
59
Recommended Citation
TIAN, Ximei and WANG, Runmao
(2021)
"A Bibliometric Study on Highly Cited Papers in the Field of Biomimetics,"
Scientific Information Research: Vol. 3:
Iss.
2, Article 6.
Available at:
https://eng.kjqbyj.com/journal/vol3/iss2/6
Reference
[1] 曾戎,屠美.生物医用仿生高分子材料[M].广州:华南理工大学出版社,2010:1-6. [2] 任露泉,梁云虹.仿生学导论[M].北京:科学出版社,2016:1-9. [3] GLEICH A,PADE C,PETSCHOW U,et al.Potentials and Trends in Biomimetics[M].Heidelberg:Springer-Verlag,2010:14-32. [4] HARMAN J.The Shark's Paintbrush:Biomimicry and How Nature is InspiringInnovation[M].Ashland:White Cloud Press, 2013:8-18. [5] BARTHLOTT W,MAIL M,BHUSHAN B,et al.Plant Surfaces:Structures and Functions for Biomimetic Innovations[J/OL].(2017-01-04)[2021-01-02].https://link.springer.com/article/10.1007/s40820-016-0125-1. [6] LI R X,HE Y W,ZHANG S Y,et al.Cell membrane-based nanoparticles:a new biomimetic platform for tumor diagnosis and treatment[J].Acta Pharmaceutica Sinica B,2018,8(01):14-22. [7] MATTEO C,CECOLIA L,ARIANNA M,et al.Biomedical applications of soft robotics[J].Nature Reviews Materials,2018,3(06):143-153. [8] SUN Y H,GUO Z G.Recent advances of bioinspired functional materials with specific wettability:from nature and beyond nature[J].Nanoscale Horizons,2019(04):52-76. [9] YAQOOB A A,PARVEEN T,UMAR K,et al.Role of Nanomaterials in the Treatment of Wastewater:a Review[J/OL].(2020-02-12)[2021-01-02].https://www.mdpi.com/2073-4441/12/2/495. [10] NGOC S H,LU G X.A review of recent research on bio-inspired structures and materials for energy absorption applications[J].Composites Part B-Engineering,2020(181):107496. [11] 王峰.交叉学科将成第14个学科门类[J].科学大观园,2020(17):16-19. [12] 曾文,桂婕,徐红姣,等.基于领域的科技文献重要度评估方法研究[J].情报理论与实践,2015,38(12):73-76,92. [13] 刘彬,陈柳.食品科学高被引论文计量分析[J].中国食品学报,2020,20(05):308-318. [14] 丁福虎.科技管理学高被引论文的基本特征:基于中国知网的文献计量分析[J].科技管理研究,2016,36(08):258-261,266. [15] 黄晓斌,张欢庆.我国情报学高被引论文分析[J].情报科学,2018,36(01):54-60. [16] 陈长华.机械工程学科ESI高被引论文的可视化分析[J].江苏科技信息,2019,36(36):4-6. [17] 王轶.中国经济类高被引论文特征研究[J].重庆大学学报(社会科学版),2019,25(01):118-128. [18] 周良发,伯倩.我国绿色发展研究高被引论文特征分析及经验启示[J].成都大学学报(社会科学版),2020(01):8-16. [19] 周群英.我国林业高被引论文特征分析:基于CNKI(2010—2019年)数据[J].图书情报导刊,2020,5(09):53-60. [20] 张丽华,田丹.合著论文计数方法对科研排名的影响研究[J].情报杂志,2019,38(01):187-193. [21] CHAOMEI CHEN.Searching for intellectual turning points:Progressive knowledge domain visualization[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101 (Supplement 1):5303-5310. [22] CHAOMEI CHEN.Science mapping:a systematic review of the literature[J].Journal of Data and Information Science,2017,2(02):1-40. [23] 李杰,陈超美.Citespace科技文本挖掘及可视化[M].北京:首都经济贸易大学出版社,2016:89-91. [24] XU Y X,SHENG K X,LI C,et al.Self-assembled graphene hydrogel via a one-step hydrothermal process[J].ACS Nano,2010,4(07):4324-4330. [25] MENG Q A,WANG Q B,ZHAO K B,et al.Hydroactuated Configuration Alteration of Fibrous Dandelion Pappi:Toward Self-Controllable Transport Behavior[J].Advanced Functional Materials,2016,26(41):7378-7385. [26] LIU J C,WANG N,YU L J,et al.Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separation[J].Nature Communications,2017,8(01):2011. [27] FANG R C,LIU M J,LIU H L,et al.Bioinspired Interfacial Materials:From Binary Cooperative Complementary Interfaces to Superwettability Systems[J].Advanced Materials Interfaces,2018,5(03):1701176. [28] ZhAO Z G,LIC X,DONG Z C,et al.Adaptive Superamphiphilic Organohydrogels with Reconfigurable Surface Topography for Programming Unidirectional Liquid Rransport[J].Advanced Functional Materials,2019,29(16):1807858. [29] 路甬祥.仿生学的科学意义与前沿:仿生学的意义与发展[J].科学中国人,2004,(04):22-24. [30] ISBE.The Da Vinci China Index-TM 2000-2019 Report[EB/OL].(2020-10-23)[2021-01-02].https://isbe-online.org/?ui=english&mod=info&act=view&id=4119. [31] 吉爱红.仿生交叉学科研究生课程教学模式探索[J].科技创新导报,2015(21):162-163. [32] 吉爱红.仿生学交叉学科研究生培养探索[J].教育教学论坛,2015(34):108-109. [33] 马子乾,张恩光.简析新工科下仿生学导论在独立学院开展的必要性[J].考试周刊,2019(20):37. [34] 李秀娟,张志辉,邹猛,等.需求视角下的交叉仿生学科及专业设立必要性分析[J].高等工程教育研究,2019(02):46-49,72. [35] 李秀娟,张志辉,梁云虹,等.新工科交叉仿生专业建设立足应用性基础学科教育探讨[J].教育教学论坛,2019(17):186-188.