Scientific Information Research
Keywords
knowledge service; knowledge discovery; fusion; semantic content; multidimensional data; knowledge content
Abstract
[Purpose/significance]As a knowledge service directly involved in problem solving and decision making in the big data environment,it is necessary to effectively discover deep knowledge in multi-source heterogeneous data.Through sorting out the knowledge service environment,we can have a better understanding of the methods and technologies of knowledge discovery based on the current content and multi-dimensional association and fusion.[Method/process]Articles from the perspectives of both at home and abroad and the general situation of knowledge discovery,in the big data and the fourth driven by knowledge discovery research paradigm is facing new challenges,from multidimensional data knowledge content and associated deep fusion method,the application of related literature at home and abroad were reviewed and the content analysis and comb,summarizes the research status and development trend.[Result/conclusion]As an interdisciplinary field,knowledge discovery is an important tool for mining cross-field and providing high-quality knowledge services.The research objects are becoming more and more complex,and the research methods and technologies are becoming more and more rich.However,the integration of multi-source heterogeneous data and the interpretability based on intelligent technology still face challenges.
First Page
58
Recommended Citation
TAN, Xiao
(2021)
"Research on Knowledge Discovery Based on Deep Integration of Multidimensional Data Knowledge Content and Relevance in Big Data Environment,"
Scientific Information Research: Vol. 3:
Iss.
4, Article 5.
Available at:
https://eng.kjqbyj.com/journal/vol3/iss4/5
Reference
[1] 李洁.数据驱动下数字图书馆知识发现服务创新模式与策略研究[D].长春:吉林大学,2019. [2] 毕强,闫晶,李洁.大数据时代数字图书馆服务转型面临的新形势与新要求[J].情报理论与实践,2017,40(12):12-16,5. [3] 王宁.谈数据库中的知识发现[J].河南图书馆学刊,2003(01):26-28. [4] 唐晓波,魏巍.知识融合:大数据时代知识服务的增长点[J].图书馆学研究,2015(05):9-14,8. [5] 胡正银,刘蕾蕾,代冰,等.基于领域知识图谱的生命医学学科知识发现探析[J].数据分析与知识发现,2020,4(11):1-14. [6] BROADUS R N.Toward a definition of “bibliometrics”[J].Scientometrics,1987,12(05):373-379. [7] 王莉亚.基于离群数据的主题演化研究[D].北京:中国科学院大学,2012. [8] 张宪录.基于数据挖掘的图书馆借阅行为分析[D].石家庄:河北经贸大学,2016. [9] 李欣,温阳,黄鲁成,等.一种基于机器学习的研究前沿识别方法研究[J].科研管理,2021,42(01):20-32. [10] 曹志鹏,潘定,潘启亮.基于表示学习的双层知识网络链路预测[J].情报学报,2021,40(02):135-144. [11] 李德毅,杨雪南.关系数据库中的知识发现研究[J].小型微型计算机系统,1992(04):40-44. [12] 李生,洪家荣,邱祥辉,等.预研辅助决策专家系统开发工具APDRAES[J].微电子学与计算机,1988(09):31-33. [13] 洪家荣.知识发现的理论及其实现[J].自动化学报,1993,19(06):663-669. [14] 沈炜杰.基于文献结构的自动文摘的初探[J].现代图书情报技术,2002(03):23-27,34. [15] 周雪华.文摘与知识发现[J].图书馆建设,2001(06):69-70. [16] 马文峰,高凤荣,王珊.论数字图书馆个性化信息推荐系统[J].现代图书情报技术,2003(02):16-18. [17] 柳群英.基于知识服务的智能信息检索系统研究[J].现代情报,2006(07):96-97,100. [18] 邹凯,汪全莉.智能搜索引擎与数字图书馆个性化服务[J].情报科学,2004(07):874-877. [19] AGRAWAL R,SRIKANT R.Fast Algorithmas for Mining Generalized Association Rules[C]//Proceedings of the 20th International Conference on Very Large Data Bases.San Francisco:Morgan Kaufmann Publishers,1994. [20] AGRAWAL R,IMIELINSKI T,SWAMI A.Mining Association Rules between Sets of Itms in Large Databases[C]//Proceeding 1993 International Conference.Washington,1993:207-216. [21] GOLAN R H,ZIARKO W.A methodology for stock market analysis utilizing rough set theory[C]// Proceedings of 1995 Conference on Computational Intelligence for Financial Engineering(CIFEr).New York,1995. [22] 王理.基于粗糙集理论的交通流状态知识发现研究[D].北京:北京交通大学,2017. [23] 洪娜,张智雄,乐小虬.基于决策树的潜在爆发词探测方法[J].情报学报,2012,31(03):228-241. [24] SWANSON D R.Fish oil,Raynaud's syndrome,and undiscovered public knowledge[J].Perspect Bio Med,1986,30(01):7-18. [25] SWANSON D R,SMALHEISER N R.An interactive system for finding complementary literatures:a stimulus to scientific discovery[J].Artificial intelligence,1997,91(02):183-203. [26] GORDON M D,DUMAIS S.Usinglatent semantic indexing for literature based discovery[J].Journal of the American Society for information science,1998,49(08):674-685. [27] 史忠植.知识发现[M].北京:清华大学出版社,2002. [28] 李广建,罗立群.走向知识融合:大数据环境下情报学的发展趋势[J].中国图书馆学报,2020,46(06):26-40. [29] National Research Council,Committee on Forecasting Future Disruptive Technologies.Persistent forecasting of disruptive technologies-report 2[M].Washington,D.C:National Academies Press,2010. [30] 冯秋燕,朱学芳.人工智能在情报工作中的应用研究[J].情报理论与实践,2019,42(11):27-33. [31] 杜建.基于多维深层数据关联的医学知识挖掘研究进展[J].农业图书情报,2019,31(03):4-12. [32] MORRIS S A,YEN G,WU Z,et al.Time line visualization of research fronts[J].Journal of the American Society for information Science and Technology,2003,54(05):413-422. [33] LEYDESDORFF L.What Can Heterogeneity Add to the Scientometric Map?Steps towards algorithmic historiography[J/OL].(2010-02-02)[2021-01-10].https://arxiv.org/ftp/arxiv/papers/1002/1002.0532.pdf. [34] 庞弘燊.基于科技文献多重共现的数据模型理论与知识发现应用范例研究[J].图书情报工作,2019,63(09):61-72. [35] WILLE R.Restructuring Lattice Theory:An Approach Based on Hierarchies of Concepts[M].Berlin:Springer,1982. [36] VENTER F J,OOSTHUIZEN G D,ROOS J D.Knowledge discovery in databases using lattices[J].Expert Systems with Applications,1997,13(04):259-264. [37] 张云中.基于形式概念分析的Folksonomy知识发现研究[M].上海:世界图书出版公司,2016. [38] HRISTOVSKI D,FRIEDMAN C,RINDFLESCH T C,et al.Exploiting semantic relations for literature-based discovery[C]//AMIA annual symposium proceedings,2006:349. [39] HU X,LI G,YOO I,et al.A semantic-based approach for mining undiscovered public knowledge from biomedical literature[C]//Granular Computing,2005 IEEE International Conference.IEEE,2005:22-27. [40] 谭晓,张志强.知识图谱研究进展及其前沿主题分析[J].图书与情报,2020(02):50-63. [41] WILKOWSKI B,FISZMAN M,MILLER C M,et al.Graph-based Methods for Discovery Browsing with Semantic Predications[C]//AMIA Anuual Symposium Proceedings,2011:1514-1523. [42] RAMAKRISHNAN C,MILNOR W H,PERRY M,et al.Discovering informative connection subgraphs in multi-relational graph[J].ACM SIGKDD Explorations Newsletter,2005,7(02):56-63. [43] CAMERON D,KAVULURU R,RINDFLESCH T C,et al.Context-driven automatic subgarph creation for literature-based discovery[J].Journal of Biomedical Informatics,2015(54):141-157. [44] 陈聪,张国惠,马晓磊,等.利用大数据挖掘和知识发现技术辅助智慧城市发展[J].大数据,2016,2(03):39-48. [45] QIN X,LEE W.Discovering Novel Attack Strategies from INFOSEC Alerts[C]//Proceedings of the 9th European Symposium on Research in Computer Security.Springer,2004:439-456. [46] QIN XLEE W.Attack Plan Recognition and Prediction Using Causal Networks[C]//Computer Security Applications Conference.IEEE,2005:370-379. [47] 樊迪.基于因果知识发现的攻击场景重构研究[D].北京:北京工业大学,2017. [48] SRINIVASAN P,LIBBUS B,SEHGAL A K.Mining MEDLINE:Postulating a Beneficial Role for Curcumin Longa in Retinal Diseases[C]//HLT-NAACL 2004 Workshop:Biolink,2004:33-40. [49] WEISSENBORN D,SCHROEDER M,TSATSARONIS G.Discovering relations between indirectly connected biomedical concepts[J].Journal of Biomedical Semantics,2015,6(01):1-19. [50] VLIETSTRA W J,ZIELMAN R,VAN DONGEN,et al.Automated extraction of potential migraine biomarkers using a semantic graph[J].Journal of Biomedical Informatics,2017(71):178-189. [51] ABDELAZIZ I,FOKOUE A,HASSANZADEH O,et al.Large-scale structural and textual similarity-based mining of knowledge graph to predict drug–drug interactions[J].Journal of Web Semantics,2017(44):104-117. [52] CONEJERO J M,PRECIADO J C,FERNANDEZ-GARCIAA J,et al.Towards the use of Data Engineering,Advanced Visualization techniques and Association Rules to support knowledge discovery for public policies[J].Expert Systems with Applications,2021(170):114509. [53] DOGAN A,BIRANT D.Machine learning and data mining in manufacturing[J].Expert Systems with Applications,2021(166):114060.