•  
  •  
 

Scientific Information Research

Keywords

knowledge element; semantic description model; knowledge extraction; red culture digital resources

Abstract

[Purpose/significance]At present,the organization of red cultural resources is displayed in the form of text,image and video,which lacks the correlation between knowledge elements,resulting in the decentralization and fragmentation of resources.It greatly limits the integrity and dissemination of knowledge in the field of red culture.It is urgent to extract massive scattered knowledge from semantic level to provide systematic organization and protection for red cultural digital resources.[Method/process]In this paper, knowledge extraction is discussed on the basis of the original construction of red culture resources digitization,and combined with the knowledge meta-semantic description model,to provide a deeper level of system protection of red culture.Firstly,the concept of red cultural knowledge element is clarified.Then,based on the construction of the red culture knowledge meta-semantic description model,the knowledge extraction method is designed,and the deep learning model is used for entity recognition and relationship extraction.Finally,the red culture digital resources in nanjing city as an example for empirical analysis.[Result/conclusion]The results show that this method can realize the standardization,knowledge and sharing of red culture digital resources,promote the development of red culture field to knowledge organization,and promote the protection and inheritance of red culture.

First Page

23

Reference

[1] 梁军,陈丽娇.视觉重构理论下红色文化数字化传播策略[J].思想教育研究,2020(01):140-143. [2] 孙烈涛.红色文献资源数字化建设实践探索:以梅园新村纪念馆周恩来图书馆数字化建设为例[J].新世纪图书馆,2021(04):48-52. [3] 付小颖,王志立.视觉重构:数字化传媒时代红色文化传播的困境与突破[J].新闻爱好者,2020(07):75-77. [4] 薛文萍,周昊,王昊,等.数字人文视角下的红色档案资源建设:以沂蒙红嫂档案为例[J].山西档案,2020(02):85-91. [5] 曹东辉,朱文生.中央苏区红色文化遗产数字化保护平台的设计与实现[J].赣南师范学院学报,2015,36(06):74-77. [6] 陈雪龙,董恩超,王延章,等.非常规突发事件应急管理的知识元模型[J].情报杂志,2011,30(12):22-26,17. [7] 庄文杰,谈国新,侯西龙,等.非物质文化遗产视频知识元组织模型研究[J].情报科学,2018,36(12):25-32. [8] 李小瑞,谢诚,李宾,等.基于知识元模型的跨模态聊天卡通表情图像合成[J/OL].图学学报:1-10[2021-12-18].http://kns.cnki.net/kcms/detail/10.1034.T.20210629.0950.002.html. [9] RAU L F.Extracting company names from text[C]//Miami:The Seventh IEEE Conference on Artificial Intelligence Application.IEEE,1991(01):29-32. [10] HANISCH D,FUNDELK,MEVISSEN H-T,et al.ProMiner:rule-based protein and gene entity recognition[J].BMC Bioinformatics,2005,6(01):S14. [11] COLLOBERT R,WESTON J,BOTTOU L,et al.Natural language processing(almost) from scratch[J]. Journal of Machine Learning Research,2011,12(08):2493-2537. [12] 吴俊,程垚,郝瀚,等.基于BERT嵌入BILSTM-CRF模型的中文专业术语抽取研究[J].情报学报,2020,39(04):409-418. [13] 谢腾,杨俊安,刘辉.基于BERT-BILSTM-CRF模型的中文实体识别[J].计算机系统应用,2020,29(07):48-55. [14] FUNDEL K,KÜFFNER R,ZIMMER R.RelEx-Relation extraction using dependency parse trees[J].Bioinformatics,2006,23(03):365-371. [15] HSIEH Y-L,CHANG Y-C,ChANG N-W,et al.Identifying Protein-protein Interactions in Biomedical Literature using Recurrent Neural Networks with Long Short-Term Memory[C].Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2:Short Papers),2017:240-245. [16] 张世豪,杜圣东,贾真,等.基于深度神经网络和自注意力机制的医学实体关系抽取[J].计算机科学,2021,48(10):77-84. [17] 柯佳.远程监督实体关系抽取研究[J].情报科学,2021,39(10):165-169,193. [18] 王思丽,刘巍,杨恒,等.基于自然语言处理和机器学习的实体关系抽取方法研究[J].图书馆学研究,2021(18):39-48. [19] 柴庆凤,史霖炎,梅珊,等.基于人工特征和机器特征融合的科技文献知识元抽取[J].数据分析与知识发现,2021,5(08):132-143. [20] 曾刚,赵雪芹.基于知识元的万里茶道数字资源知识抽取与组织研究[J].情报理论与实践,2021,44(10):173-178,164. [21] 董坤.基于知识元的非物质文化遗产知识抽取与组织研究[J].情报理论与实践,2021,44(09):155-160,148. [22] 温有奎,焦玉英.知识元语义链接模型研究[J].图书情报工作,2010,54(12):27-31. [23] 王向阳,郗玉娟,谢静思.基于知识元的动态知识管理模型研究[J].情报理论与实践,2017,40(12):94-99. [24] 文庭孝.知识单元的演变及其评价研究[J].图书情报工作,2007(10):72-76. [25] 傅柱,王曰芬,徐绪堪,等.基于知识元的中文专利文献知识描述框架[J].情报理论与实践,2019,42(04):145-150. [26] 徐绪堪,苏新宁,冯兰萍.面向知识服务的知识组织过程研究[J].情报资料工作,2015(01):6-13.

Share

COinS