Scientific Information Research
Keywords
digital humanities; ancient Chinese classics; knowledge graph; SVM algorithm; BERT-LSTM-CRF
Abstract
[Purpose/significance]Construct an automatic question-and-answer system of knowledge graphs in the field of ancient Chinese classics from the perspective of digital humanities to promote the development and innovation of traditional Chinese culture.[Method/process]Taking "Zuo Zhuan" as the specific research object,on this basis,support vector machine (SVM) algorithm is used to realize the intention recognition of question sentences,and the deep learning algorithm based on BERT-LSTM-CRF realizes the entity recognition function of question sentences.Then cpyher query expression is constructed to retrieve and return the results in Neo4j database; the front page builds a display platform based on Flask framework for users to use,and finally realizes the construction of question and answer system.[Result/conclusion]The question answering system can realize intelligent retrieval of questions in the field of ancient Chinese and has application value.
First Page
46
Recommended Citation
LIU, Huan; LIU, Liu; and WANG, Dongbo
(2022)
"Research on Automatic Question Answering of Domain Knowledge Graph from the Perspective of Digital Humanities,"
Scientific Information Research: Vol. 4:
Iss.
1, Article 5.
Available at:
https://eng.kjqbyj.com/journal/vol4/iss1/5
Reference
[1] 张云中,孙平.历史文化名人游学足迹知识图谱的构建与可视化[J].图书馆杂志,2021,40(09):81-87,96.
[2] 周莉娜,洪亮,高子阳.唐诗知识图谱的构建及其智能知识服务设计[J].图书情报工作,2019,63(02):24-33.
[3] 杨海慈,王军.宋代学术师承知识图谱的构建与可视化[J].数据分析与知识发现,2019,3(06):109-116.
[4] 欧阳剑,梁珠芳,任树怀.大规模中国历代存世典籍知识图谱构建研究[J].图书情报工作,2021,65(05):126-135.
[5] ZHIPENG G,YI X,SUN M,et al.Jiuge:A Human-Machine Collaborative Chinese Classical Poetry Generation System[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics:System Demonstrations.Florence,2019:25-30.
[6] 王东波,刘畅,朱子赫,等.SikuBERT与SikuRoBERTa:面向数字人文的《四库全书》预训练模型构建及应用研究[J/OL].图书馆论坛:1-14[2021-12-21].http://kns.cnki.net/kcms/detail/44.1306.G2.20210819.2052.008.html.
[7] 刘畅,王东波,胡昊天,等.面向数字人文的融合外部特征的典籍自动分词研究:以sikuBERT预训练模型为例[J/OL].图书馆论坛:1-13[2021-12-21].http://kns.cnki.net/kcms/detail/44.1306.G2.20210828.2234.002.html.
[8] 耿云冬,张逸勤,刘欢,等.面向数字人文的中国古代典籍词性自动标注研究:以SIKU-BERT预训练模型为例[J/OL].图书馆论坛:1-11[2021-12-21].http://kns.cnki.net/kcms/detail/44.1306.G2.20210913.0859.004.html.
[9] 王倩,王东波,李斌,等.面向海量典籍文本的深度学习自动断句与标点平台构建研究[J].数据分析与知识发现,2021,5(03):25-34.
[10] 刘江峰,冯钰童,王东波,等.数字人文视域下SikuBERT增强的史籍实体识别[J/OL].图书馆论坛:1-14[2021-12-21].http://kns.cnki.net/kcms/detail/44.1306.G2.20210817.0904.002.html.
[11] 胡昊天,张逸勤,邓三鸿,等.面向数字人文的《四库全书》子部自动分类研究:以Siku BERT和Siku Ro BERTa预训练模型为例[J/OL].图书馆论坛:1-16[2021-12-21].http://kns.cnki.net/kcms/detail/44.1306.G2.20211017.1823.002.html.
[12] 徐润华,王东波,刘欢,等.面向古籍数字人文的《资治通鉴》自动摘要研究:以SikuBERT预训练模型为例(9)[J/OL].图书馆论坛:1-12[2021-12-21].http://kns.cnki.net/kcms/detail/44.1306.G2.20211110.0849.004.html.
[13] 王树西,刘群,白硕.一个人物关系问答的专家系统[J].广西师范大学学报(自然科学版),2003(01):31-36.
[14] 王东波,高瑞卿,沈思,等.基于深度学习的先秦典籍问句自动分类研究[J].情报学报,2018,37(11):1114-1122.
[15] CHURCH A.Review:A.M.Turing On Computable Numbers with an Application to the Entscheidungs problem[J].Journal of Symbolic Logic,1937,2(01):36-38.Â
[16] WEIZEN J.ELIZA—a computer program for the study of natural language communication between man and machine[J].Communications of the ACM,1983,26(01):114-119.
[17] GREEN B F,WOLF A K,CHOMSKY C,et al.Baseball:an Automatic Question-Answerer[C]//Proceedings of the Western Joint Computer Conference.IEEE Computer Society,1961:219-224.
[18] WOOD A,DICKEY S,MARVIN B,et al.Lunar anorthosites and a geophysical model of the moon[J].Geochimica Et Cosmochimica Acta Supplement,1970(01):19-22.
[19] WOODS W A.Lunar rocks in natural English:explorations in natural language question answering[J]. Linguistic Structures Processing,1977,12(05):521-569.
[20] ATHIRA P M,SREEJA M,REGHURAJ P C.Architecture of an Ontology-Based Domain-Specific Natural Language Question Answering System[J].International Journal of Web & Semantic Technology,2013,4(04):31-38.
[21] 黄寅飞,郑方,燕鹏举,等.校园导航系统Easy Nav的设计与实现[J].中文信息学报,2001(04):35-40.
[22] 杨燕.面向电商领域的智能问答系统若干关键技术研究[D].上海:华东师范大学,2016.
[23] 郭琴芳.基于知识图谱的初中数学在线学习系统及应用[D].陕西:西安理工大学,2019.
[24] WANG Z,ZHANG J,FENG J,et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Québec City,2014:1112-1119.
[25] 于游,付钰,吴晓平.中文文本分类方法综述[J].网络与信息安全学报,2019,5(05):1-8.
[26] 刘浏,王东波.命名实体识别研究综述[J].情报学报,2018,37(03):329-340.
[27] WERBOS P J.Generalization of backpropagation with application to a recurrent gas market model[J].Neural Networks,1988,1(04):339-356.
[28] HOCHREITER S,SCHMIDHUBER J.Long Short-Term Memory[J].Neural Computation,1997,9(08):1735-1780.
[29] LAFFERTY J,MCCALLUM A,PEREIRA F.Conditional Random Fields:Probabilistic Models for Segmenting and Labeling Sequence Data[C]//Proc.18th International Conf.on Machine Learning,2001.
[30] DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[J/OL].arXiv:[2021-12-21].https://arxiv.org/pdf/1810.04805v2.pdf.
[31] MIKOLOV T,CHEN K,CORRADO G,et al.Efficient Estimation of Word Representations in Vector Space[J].arxiv:[2021-12-21].https://arxiv.org/pdf/1301.3781.pdf.