•  
  •  
 

Scientific Information Research

Keywords

government WeChat; index system; PSO; BP Neural Network

Abstract

[Purpose/significance]As a new government public service platform based on social media,the government WeChat plays an increasingly important role in the efforts of promoting the processes of govern-ment information-opening and building service-oriented government and digital government.This article starts from analyzing the evaluation standards of the impact of government WeChat to improve the service quality and the communication effect.[Method/process]In order to improve the level of credibility and intelligence of the evaluation, this article proposes a PSO-BP Neural Network model to evaluate the impact of government WeChat.Firstly,the model builds an index system with four first level indicators:information services,usage behavior,platform character,and influencing power based on mass communication theory;Then the model adopts AHP to determine the weight vectors of index and uses grey method to get clustering coefficients and results;Finally,an experiment is conducted using PSO-BP Neural Network model to evaluate 50 government WeChat platforms.[Result/conclusion]The experiment validates that the model is effective and intelligent.Adopting the model will improve the performance of government WeChat platforms.

First Page

60

Reference

[1] 李宗富,张向先.政务微信信息生态链的构成要素、形成机理、结构与类型[J].情报理论与实践,2016,39(08):32-39.
[2] 李增辉.网民在哪,政务新媒体就在哪[N].人民日报,2015-02-12(020).
[3] BONSÓN E,ROYO S,RATKAI M.Citizens' Engagement on Local Governments' Facebook Sites.An Empirical Analysis:The Impact of Different Media and Content Types in Western Europe[J].Government Information Quarterly,2015,32(01):52-62.
[4] DRISS O,MELLOULI S,TRABELSI Z.From citizens to government policy-makers:Social media data analysis[J].Government Information Quarterly,2019,36(03):560-570.
[5] GRUZD A,LANNIGAN J,QUIGLEY K.Eamining government cross-platform engagement in social media:Instagram vs Twitter and the big lift project[J].Government Information Quarterly,2018,35(04):579-587.
[6] MEDAGLIA R,ZHU D.Public deliberation on government-managed social media:A study on Weibo users in China[J].Government Information Quarterly,2017,34(03):533-544.
[7] ANTONIADIS K,ZAFIROPOULOS K,VRANA V.A Method for Assessing the Performance of e-Government Twitter Accounts[J].Future Internet,2016,8(02):1-18.
[8] PÉREZ-MOROTE R,PONTONES-ROSA C,NÚÑEZ-CHICHARRO M.The effects of e-government evaluation,trust and the digital divide in the levels of e-government use in European countries[J].Technological Forecasting and Social Change,2020,154:119973.
[9] 贾哲敏,顾晓宇.政务微信传播的框架建构与影响[J].北京航空航天大学学报(社会科学版),2018,31(01):32-38.
[10] 张放,杨颖,吴林蔚.政务微信“软文”化传播效果的实验研究[J].新闻界,2020(01):59-73.
[11] 谢丽娜.政务社交媒体中用户信息获取影响因素研究述评[J].图书情报工作,2015,59(19):113-121.
[12] 宋之杰,巫翠玉,石蕊.政务微信公众号用户采纳研究[J].电子政务,2015(03):18-25.
[13] 王萍,张韫麒,朱力香,等.政务微信公众号知识服务质量影响因素研究[J].图书情报工作,2018,62(23):43-50.
[14] 任昱广,陈旸.政务微信公众平台信息服务质量提升策略研究[J].企业技术开发,2018,37(11):34-36.
[15] 马莱茨克.大众传播心理学[M].汉堡:汉斯-布雷多学院出版社,1963.
[16] 管新建,张文鸽,吴泽宁.水利工程评价中层次分析法标度分析[J].河南水利,2002(04):20-21.
[17] 庞博,李玉霞,童玲.基于灰色聚类法和模糊综合法的水质评价[J].环境科学与技术,2011,34(11):185-188.
[18] 王玉冬,朱红.高新技术企业资金控制效果评价:基于PSO-BP神经网络[J].财会通讯,2017(08):37-39.

Share

COinS