Scientific Information Research
Keywords
academic virtual community; keywords; keyword extension; community section; knowledge exchange; input-output; efficiency study
Abstract
[Purpose/significance]With the increasing interaction of Internet users,knowledge exchange in acade-mic virtual communities plays an important auxiliary role in enriching scholars' professional knowledge and optimizing the academic exchange ecology.Therefore,how to effectively measure the efficiency of knowledge exchange in academic virtual communities is of obvious significance to the development and improvement of existing academic virtual communities.[Method/process]This paper proposes an effective keyword expansion scheme using recommendation model.The measurement method proposed in this paper uses academic literature keywords as input indicators,views,replies and recommendations as output indicators, and combined with various analysis means including entropy weight method and academic virtual community section comparison,makes a complete analysis,research and comparison on the effectiveness of keyword input indicators and the knowledge exchange efficiency of different academic virtual community sections.[Result/conclusion]Expanded academic literature keywords can better reflect the knowledge exchange of academic virtual community.Meanwhile,the efficiency of knowledge exchange in different sections of academic virtual community is still different,and there are great differences in the efficiency of knowledge exchange between community posts in some sections.These results can provide strategic support for the development and improvement of academic virtual community,such as the improvement of knowledge exchange efficiency, forum optimization and user retention.
First Page
12
Recommended Citation
LI, Shuqing; YAN, Zihao; ZHANG, Zhiwang; and MA, Dandan
(2022)
"Evaluation of the Knowledge Exchange Efficiency in Academic Virtual Community Based on Expanded Keyword Metrics Analysis,"
Scientific Information Research: Vol. 4:
Iss.
4, Article 2.
Available at:
https://eng.kjqbyj.com/journal/vol4/iss4/2
Reference
[1] RHEINGOLD H.The Virtual Community:Homesteading on the Electronic Frontier[M].New Jersey:Addison Wesley,1993.
[2] 毕强,贯君,赵夷平.学术虚拟社区信息运动规律研究[J].图书馆学研究,2015(07):6-13.
[3] LIU R,SHAO X.Understanding Knowledge Sharing Willingness in Virtual Academic Community:A Survey Study on College Students[C]//International conference on emerging technologies for information systems,computing,and management.Hangzhou:2013,V2:1091-1098.
[4] 王东.虚拟学术社区知识共享实现机制研究[D].长春:吉林大学,2010.
[5] 化柏林,阮元元,王宏光,等.数据环境下的科技情报资源保障体系研究[J].科技情报研究,2021,3(02):1-15.
[6] 邹儒楠,于建荣.浅析非正式交流的历史变迁[J].情报理论与实践,2010,33(02):13-16.
[7] 李思豫,王瑞,袁勤俭.学科水平对学术虚拟社区知识交流的影响研究[J].情报科学,2021,39(06):36-41.
[8] 杨瑞仙,黄书瑞,于政杰.基于三阶段DEA模型的学术虚拟社区知识交流效率评价研究[J].情报学报,2021,40(03):256-266.
[9] 杨瑞仙,权明喆,武亚倩,等.学术虚拟社区科研人员知识交流效率感知调查研究[J].图书与情报,2018(06):72-83.
[10] 吴佳玲.虚拟学术社区知识交流效率研究[D].绵阳:西南科技大学,2019.
[11] 方洁,龚立群,张亚军.基于知识接受者视角的虚拟团队知识共享行为研究[J].图书馆理论与实践,2013(12):60-63.
[12] ZHOU T,LU YAOBIN.Integrating TTF and UTAUT to Explain Mobile Banking User Adoption[J].Computers in Human Behavior,2010,26(04):760-767.
[13] 钟玲玲,王战平,谭春辉.虚拟学术社区用户知识交流影响因素研究[J].情报科学,2020,38(03):137-144.
[14] 胡湘洪.基于数据包络分析的质量管理人才投入产出效率研究[D].合肥:合肥工业大学,2017.
[15] ROSENTHAL E C,WEISS H J.A data envelopment analysis approach for ranking journals[J].Omega: The international journal of management science,2016,70(07):135-147.
[16] 庞建刚,吴佳玲.基于SFA方法的虚拟学术社区知识交流效率研究[J].情报科学,2018,36(05):104-109.
[17] ORTEGA F J,GAVILAN J M.The measurement of production efficiency in scientific journals through stochastic frontier analysis models:Application to quantitative economics journals[J].Journal of Informetrics,2013,7(04):959-965.
[18] 宗乾进,吕鑫,袁勤俭,等.学术博客的知识交流效果评价研究[J].情报科学,2014,32(12):72-76.
[19] 万莉.学术虚拟社区知识交流效率测度研究[J].情报杂志,2015,34(09):170-173.
[20] 汤刚强.网络学术社区学科关系社会网络研究[D].南京:南京大学,2015.
[21] 王学东,杜晓曦,石自更.面向学术博客知识交流的社会网络中心性分析[J].情报科学,2013,31(03):3-8,16.
[22] 刘雨农,刘敏榕.虚拟知识社区的社会网络结构及影响因素:以知乎网为例[J].图书情报工作,2018,62(04):89-96.
[23] 李晓利,杨育,杨洁,等.知识共享效率的R-RNN评价模型研究及应用[J].计算机工程与应用,2009,45(10):226-230.
[24] 胡德华,张又月,罗爱静.基于遗传投影寻踪算法的学术虚拟社区知识交流效率研究[J].图书馆论坛,2019,39(04):67-73,83.
[25] 李树青,苗蕾,严梓豪,等.学术虚拟社区知识交流效率研究方法综述[J].科技情报研究,2022,4(01):1-12.
[26] 谭晓,李辉,许海云.基于多维数据知识内容和关联深层融合的知识发现研究综述[J].科技情报研究,2021,3(04):58-68.
[27] HE X N,DENG K,WANG X,et al.Lightgcn:Simplifying and powering graph convolution network for recommendation[C]//In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval.New York:2020(07):639-648.
[28] 万方数据.知识服务平台[DB/OL].[2021-01-14].https://new.wanfangdata.com.cn.
[29] 科学网.博客[EB/OL].[2021-02-10].http://blog.sciencenet.cn/blog.php.