Scientific Information Research
Keywords
timing keywords; theme evolution; keyword extraction; visual analysis
Abstract
[Purpose/significance]Excavating the research topics in a large number of articles, sorting out the evolution context and correlation of the research topics, predicting the frontier hot spots of the topics can be helpful to enhance the scientificity and vividness of the evolution results.[Method/precess]This paper puts forward the concept of time series influence factor as an important feature in keyword extraction, uses the method of time window to mine and identify topics by using topic model, and makes visual analysis. By applying time series model in the field of deep learning, the purpose of predicting topic popularity is achieved.[Result/concluson]It is verified that the keyword extraction integrating temporal features can improve the effect of the topic model. Through visualization, not only the change trend of the overall topic popularity can be observed, but also the evolution of the topic content in each time period can be analyzed, its splitting and merging trend can be also explored.
First Page
57
Recommended Citation
LI, Shuqing; ZHU, Juntao; and WANG, Wan
(2023)
"Research on Topic Discovery and Evolution Trend based on Temporal Keyword Characteristics Analysis,"
Scientific Information Research: Vol. 5:
Iss.
2, Article 6.
Available at:
https://eng.kjqbyj.com/journal/vol5/iss2/6
Reference
[1] 王康,高继平,潘云涛,等.多位态研究主题识别及其演化路径方法研究[J].图书情报工作,2021,65(11):113-122.
[2] CHEN B T,TSUTSUI S,DING Y,et al.Understanding the topic evolution in a scientific domain:An exploratory study for the field of information retrieval[J].Journal of Informetrics,2017,11(04):1175-1189.
[3] 赵京胜,朱巧明,周国栋,等.自动关键词抽取研究综述[J].软件学报,2017,28(09):2431-2449.
[4] 胡少虎,张颖怡,章成志.关键词提取研究综述[J].数据分析与知识发现,2021,5(03):45-59.
[5] FRANK E,PAYNTER G W,WITTEN I H,et al.Domain-specific keyphrase extraction[C]//16th International Joint Conference on Artificial Intelligence,Stockholm:1999,668-673.
[6] TURNEY P D.Learning algorithms for keyphrase extraction[J].Information retrieval,2000,2(04):303-336.
[7] GOLLAPALLI S D,LI X,YANG P.Incorporating expert knowledge into keyphrase extraction[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,2017,3180-3187.
[8] 陈伟,吴友政,陈文亮,等.基于BiLSTM-CRF的关键词自动抽取[J].计算机科学,2018,45(S1):91-96,113.
[9] PAPAGIANNOPOULOU E,TSOUMAKAS G.A Review of Keyphrase Extraction[J/OL].(2019-07-30)[2022-09-10].https://arxiv.org/pdf/1905.05044.pdf.
[10] SPARCK JONES K.A statistical interpretation of term specificity and its application in retrieval[J].Journal of documentation,1972,28(01):11-21.
[11] EL-BELTAGY S R,REFEA A.KP-Miner:A keypharse Extraction System for English and Arabic Documents[J].Information Systems,2009,34(01):132-144.
[12] LIU Z Y,LI P,ZHENG Y B,et al.Clusetring to Find Exemplar Terms for Keyphrase Extraction[C]//Proceedings of the 2009 Conference on Empirical Methods in Natureal Language Processing,Singapore:2009,257-266.
[13] CAMPOS R,MANGARAVITE V,PASQUALI A,et al.A Text Feature Based Automatic Keyword Extraction Method for Single Documents[C]//The 40th European Conference on IR Research,Grenoble:2018,684-691.
[14] WON M,MARTINS B,RAIMUNDO F.Automatic Extraction of Relevant Keyphrases for the Study of Issue Competition[C]//Proceedings of the 20th International Conference on Computational Linguistics and Intelligent Text Processing,2019.
[15] MIHALCEA R,TARAU P.Textrank:bringing order into text[C]//Conference on Empirical Methods in Natural Language Processing,Barcelona:2004.
[16] WAN X J,XIAO J G.Single Document Keyphrase Extraction Using Neighborhood Knowledge[C]//The 23rd AAAI Conference on Artificial Intelligence,Chicago:2008,855-860.
[17] FLORESCU C,CARAGEA C.PositionRank:An Unsupervised Approach to Keyphrase Extraction from Scholarly Documents[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics,Vancouver:2017,1105-1115.
[18] DANESH S,SUMNER T,MARTIN J H.SGRank:Combining Statistical and Graphical Methods to Improve the State of the Art in Unsupervised Keyphrase Extraction[C]//The 14th Joint Conference on Lexical and Computational Semantics,Denver:2015,117-126.
[19] WAN X J,XIAO J G.Single document keyphrase extraction using neighborhood knowledge[C]//The 23rd National Conference on Artificial Intelligence,Chicago:2008,855-860.
[20] GOLLAPALLI S D,CARAGEA C.Extracting Keyphrases from Research Papers Using Citation Networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2014,2(01):1629-1635.
[21] WANG R,LIU W,MCDONALD C.Corpus-independent Generic Keyphrase Extraction Using Word Embedding Vectors[J/OL].[2022-09-10].http://research.microsoft.com/en-us/um/beijing/events/DL-WSDM-2015/paper.pdf.
[22] WAN X J,YANG J W,XIAO J G.Towards an iterative reinforcement approach for simultaneous document summarization and keyword extraction[C]//The 45th Annual Meeting of the Association of Computational Linguistics,Prague:2007,552-559.
[23] SHI W,ZHENG WG,YU J X,et al.Keyphrase extraction using knowledge graphs[C]//.Web-Age Information Management,Springer:2017,Springer:2017,132-148.
[24] HASAN K S,NG V.Automatic Keyphrase Extraction:A Survey of the State of the Art[C]//The 52nd Annual Meeting of the Association for Computational Linguistics,Baltimore:2014,1262-1273.
[25] 单斌,李芳.基于LDA话题演化研究方法综述[J].中文信息学报,2010,24(06):43-49,68.
[26] WANG X,MCCALLUM A.Topics Over Time:A Non-Markov Continuous-Time Model of Topical Trends[C]//The 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,Philadelphia:2006,425-433.
[27] GRIFFTHS T L,STEYVERS M.Finding Scientific Topics[J].Proceddings of the National Academiy of Sciences of the United States of America,2004,101(S1):5228-5235.
[28] BLEI D M,LAFFERTY J D.Dynamic Topic Models[C]//The Twenty-Third International Conference on Machine Learning,Pittsburgh:2006,25-29.
[29] ALSUMAIT L,D BARBARÁ,DOMENICONI C.On-line LDA:Adaptive Topic Models for Mining Text Streams with Applications to Topic Detection and Tracking[C]//Eighth IEEE International Conference on Data Mining,Pisa:2008.
[30] 隗玲,许海云,胡正银,等.学科主题演化路径的多模式识别与预测:一个情报学学科主题演化案例[J].图书情报工作,2016,60(13):71-81.
[31] 高楠,彭鼎原,傅俊英,等.基于专利IPC分类与文本信息的前沿技术演进分析:以人工智能领域为例[J].情报理论与实践,2020,43(04):123-129.
[32] 侯剑华,李莲姬,杨秀财.基于引文网络结构变换的大数据研究前沿预测[J].情报科学,2018,36(06):142-148,168.
[33] 李静,徐路路,赵素君.基于时间序列分析和SVM模型的基金项目新兴主题趋势预测与可视化研究[J].情报理论与实践,2019,42(01):118-123,152.
[34] 岳丽欣,周晓英,陈旖旎.基于ARIMA模型的信息构建研究主题趋势预测研究[J].图书情报知识,2019(05):54-63,72.
[35] 霍朝光,霍帆帆,董克.基于LSTM神经网络的学科主题热度预测模型[J].图书情报知识,2021(02):25-34.