Scientific Information Research
Keywords
information barrier, information overload, information relevance, BTM, information quality, crisis situation
Abstract
[Purpose/significance]In the crisis situation, users are often troubled by information overload. In order to alleviate its adverse effects, this study proposes an information barrier construction method based on information relevance, quality, and influence. The topic model is used to classify the information, and the topics and information unrelated to the crisis events are filtered.[Method/process]Based on the ELM and crisis communication matrix as well as the existing information quality evaluation indicators, an evaluation system for the quality of microblog information in the crisis situation is constructed. According to the external and internal characteristics of microblog under the crisis, we construct secondary indicators from the perspective of source credibility and information content quality, and use the entropy method to determine the weight of each indicator. The number of reposts, likes, and trust indicators are used to measure the influence of microblogging. An information barrier based on information influence is constructed.[Result/conclusion]Taking the Omicron COVID-19 outbreak as an example, this study conducted topic modeling, quality, and impact assessment on microblogging, and filtered irrelevant, low-quality, and low influence information. The information barrier construction method proposed in this study is helpful to mitigate the adverse effects of information overload in crisis situations.
First Page
1
Last Page
12
Digital Object Identifier (DOI)
10.19809/j.cnki.kjqbyj.2023.03.001
Recommended Citation
AN, Lu and WANG, Yusheng
(2023)
"Building an Information Barrier for Information Overload under the Crisis Situation,"
Scientific Information Research: Vol. 5:
Iss.
3, Article 1.
DOI: 10.19809/j.cnki.kjqbyj.2023.03.001
Available at:
https://eng.kjqbyj.com/journal/vol5/iss3/1
Reference
[1] ROSENTHAL U,CHARLES M T,HART P T.Coping with Crises: The Management of Disasters,Riots and Terrorism[M].Springfield:Charles C.Thomas,1989.[2] EPPLER M J,MENGIS J.The Concept of Information Overload:A Review of Literature from Organization Science,Accounting,Marketing,MIS,and Related Disciplines[J].The Information Society,2010,20(05): 325-344.[3] BAWDEN D,ROBINSON L.The Dark Side of Information:Overload,Anxiety and other Paradoxes and Pathologies[J].Journal of Information Science,2009,35(02):180-191.[4] SOROYA S H,FAROOQ A,MAHMOOD K,et al.From Information Seeking to Information Avoidance: Understanding the Health Information Behavior during a Global Health Crisis[J].Information Processing & Management,2021,58(02):102440.[5] 国家信息中心.《“新型冠状病毒肺炎”公众认知与信息传播调研报告》正式发布[EB/OL].(2020-03-10)[2023-04-12].https://www.ndrc.gov.cn/xxgk/jd/wsdwhfz/202003/t20200310_1222763.html?code=&state=123.[6] PETTY R E,CACIOPPO J T.Communication and Persuasion:Central and Peripheral rRoutes of Attitude Change[J].The American Journal of Psychology,1988:155-156.[7] PETTY R E,CACIOPPO J T.The Elaboration Likelihood Model of Persuasion[J].Advances in Experimental Social Psychology,1986(19):123-205.[8] HO S Y,BODOFF D.The Efects of Web Personalization on User Attitude and Behavior:an Integration of the Elaboration Likelihood Model and Consumer Search Theory[J].MIS Quarterly,2014,38(02):497-520.[9] 查先进,张晋朝,严亚兰.微博环境下用户学术信息搜寻行为影响因素研究:信息质量和信源可信度双路径视角[J].中国图书馆学报,2015,41(03):71-86.[10] LUO C,WU J,SHI Y,et al.The Effects of Individualism-collectivism Cultural Orientation on eWOM Information[J].International Journal of Information Management,2014,34(04):446-456.[11] REUTER C,HUGHES A L,KAUFHOLD M A.Social Media in Crisis Management:An Evaluation and Analysis of Crisis Informatics Research[J].International Journal of Human-Computer Interaction,2018,34(04):280-294.[12] TOFFLER A.Future Shock[M].New York:Random House,1970.[13] KAUFHOLD M A,RUPP N,REUTER C,et al.Mitigating Information Overload in Social Media during Conflicts and Crises:Design and Evaluation of a Cross-platform Alerting System[J].Behaviour & Information Technology,2020,39(03):319-342.[14] 陈琼,宋士杰,赵宇翔.突发公共卫生事件中信息过载对用户信息规避行为的影响:基于COVID-19信息疫情的实证研究[J].情报资料工作,2020,41(03):76-88.[15] 王琳,朱可欣.“新冠肺炎”信息疫情对大学生社交媒体用户信息行为的影响[J].图书馆杂志,2020,39(07):83-94,123.[16] DENNING P J.ACM President's Letter: Electronic Junk[J].Communications of the ACM,1982,25(03):163-165.[17] HANANI U,SHAPIRA B,SHOVAL P.Information Filtering:Overview of Issues,Research and Systems[J]. User Modeling and User-Adapted Interaction,2001,11(03):203-259.[18] MALONE T W,GRANT K R,TURBAK F A,et al.Intelligent Information-sharing Systems[J].Communications of the ACM,1987,30(05):390-402.[19] SRIRAM B,FUHRY D,DEMIR E,et al.Short Text Classification in Twitter to Improve Information Filtering[C]//Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval,Switzerland:2010.[20] 邢金彪. 基于概率图模型的社交网络信息过滤方法研究[D].合肥:中国科学技术大学,2016.[21] 冯缨,张瑞云.基于用户体验的微博信息质量评估研究[J].图书馆学研究,2014(09):62-67,101.[22] WANG R Y,STRONG D M.Beyond Accuracy:What Data Quality Means to Data Consumers[J].Journal of Management Information Systems,1996,12(04):5-33.[23] LEE Y W,STRONG D M,KAHN B K,et al.AIMQ:a Methodology for Information Quality Assessment[J].Information & Management,2002,40(02):133-146.[24] 高锡荣,张红超.海量文本信息的价值评估模型及算法:以新浪微博为例[J].情报杂志,2016,35(06): 151-155.[25] 胡媛,韦肖莹,王灿.微博信息质量评价指标体系构建研究[J].情报科学,2017,35(06):44-50.[26] 胡千代,王芳.政府数据质量评价指标体系构建研究[J].科技情报研究,2021,3(03):17-34.[27] 袁毅. 可配置参数的社交媒体信息质量评价框架研究[J].河北学刊,2019,39(04):153-158.[28] 沙勇忠,徐瑞霞.基于AT的应急信息需求分析:框架及实证研究[J].信息资源管理学报,2011(02):32-48.[29] YAN X,GUO J,LAN Y,et al.A biterm topic model for short texts[C]//Proceedings of the 22nd International Conference on World Wide Web,Rio de Janeiro:2013.[30] 安璐,胡俊阳,李纲.突发事件情境下社交媒体高影响力用户画像研究[J].情报资料工作,2020,41(06):6-16.[31] 鞠菲. 网络信息老化实证研究:以新浪新闻为例[J].情报杂志,2010,29(10):41-45,40.[32] 马费成,夏永红.网络信息的生命周期实证研究[J].情报理论与实践,2009,32(06):1-7.[33] 莫祖英,马费成,罗毅.微博信息质量评价模型构建研究[J].信息资源管理学报,2013,3(02):12-18.[34] 安璐,徐曼婷.突发公共卫生事件情境下网民对政务微博信任度的测度[J].数据分析与知识发现,2022,6(01):55-68.[35] 安璐,欧孟花.突发公共卫生事件利益相关者的社会网络情感图谱研究[J].图书情报工作,2017,61(20):120-130.[36] 王亚民,胡悦.基于BTM的微博舆情热点发现[J].情报杂志,2016,35(11):119-124,140.