Scientific Information Research
Keywords
topic mining; dynamic fluctuation; binary evolution; patent analysis; industrial robot
Abstract
[Purpose/significance]From the perspective of "overall ecology + local stage", mining the technical theme and its evolution law in the field of industrial robots can not only know the overall process of technological development, but also clarify the specific paradigm of technology combination, which has important practical significance for insight into the technological progress and capital investment focus in the field of industrial robots.[Method/process]Based on incoPat patent database, taking the industrial robot field from 2003 to 2022 as an example, combined with Word2vec word vector model and LDA topic model, data mining and corpus expansion of patent texts were carried out, and then domain skill topics were identified at the overall ecological level. Then, combined with the technology life cycle theory, the technical topics of each stage are deeply explored (similarity calculation, correlation analysis, skill combination law). The 45 kinds of technical topic paths are described and visualized, and the development status and evolution law of skill topics are clarified. [Result/conclusion]The research shows that the proposed method process can more accurately identify multiple topics in the field of industrial robots from the perspective of the overall ecology, and can identify the thematic focus from the perspective of local stages. In the process of technology development, the evolution of technology theme shows a change law of "diffusion → enrichment → systematization". By calculating the evolutionary strength to characterize the main path, it can also clearly show the fluctuation of key technologies in the field of industrial robots. The method and process proposed in this paper can provide strong theoretical and practical support for technology integration, capital investment, development and innovation in the field of industrial robots.
First Page
102
Recommended Citation
DOU, Luyao; ZHOU, Zhigang; LI, Yi; and JIANG, Tao
(2024)
"Topic Mining and Dynamic Evolution Analysis of Patent Technology From the Perspective of Binary Evolution:Take the Field of Industrial Robots as an Example,"
Scientific Information Research: Vol. 6:
Iss.
1, Article 9.
Available at:
https://eng.kjqbyj.com/journal/vol6/iss1/9
Reference
[1] 李诗韵,徐承红.工业机器人对中国区域产业结构的影响研究[J].地域研究与开发,2022,41(01):6-12.
[2] 宋旭光,左马华青.工业机器人如何影响制造业就业变动:基于上市公司微观数据的分析[J].经济学动态,2022(07):70-89.
[3] 杜文强.人口老龄化促进了中国工业机器人应用吗?[J].产经评论,2022,13(05):73-87.
[4] 明娟,胡嘉琪.工业机器人应用、劳动保护与异质性技能劳动力就业[J].人口与经济,2022(04):106-121.
[5] 杜文强.工业机器人应用对地区技能结构的影响[J].当代经济研究,2022(03):98-110.
[6] 唐宜红,顾丽华.智能制造对出口的影响:基于工业机器人的经验证据[J].国际经贸探索,2022,38(04):4-21.
[7] HERMANSSON T,CARLSON J,LINN J,et al.Quasi-static path optimization for industrial robots with dress packs[J].Robotics and Computer-Integrated Manufacturing,2021,68(02):22-64.
[8] LARSEN L,KIM J.Path planning of cooperating industrial robots using evolutionary algorithms[J].Robotics and Computer-Integrated Manufacturing,2021:67.
[9] SHUO X,LIYUAN H,GUANCAN Y,et al.A topic models based framework for detecting and forecasting emerging technologies[J].Technological Forecasting & Social Change,2021:162.
[10] RORTAIS A,BARRUCCI F,ERCOLANO V,et al.A topic model approach to identify and track emerging risks from beeswax adulteration in the media[J].Food Control,2021:119.
[11] 胡吉明,陈果.基于动态LDA主题模型的内容主题挖掘与演化[J].图书情报工作,2014,58(02):138-142.
[12] KUN G,PRATHIK A,RAKESH K.Analysis and evaluation of the regional air quality index forecasting based on web-text sentiment analysis method[J].Environmental Impact Assessment Review,2021:87.
[13] 王颖洁,朱久祺,汪祖民,等.自然语言处理在文本情感分析领域应用综述[J].计算机应用,2022,42(04):1011-1020.
[14] 黄晓斌,赵超.文本挖掘在网络舆情信息分析中的应用[J].情报科学,2009,27(01):94-99.
[15] DEERWESTER S,DUMAIS S T,FURNAS G W,et al.Indexing by latent semantic analysis[J].Journal of the Association for Information Science & Technology,1990,41(06):391-407.
[16] HOFMANN T.Probabilistic Latent Semantic Indexing[J].Acm Sigir,2017,51(02):211-218.
[17] BLEI D M,NG A Y,JORDAN M I.Latent dirichlet allocation[J].Journal of machine Learning research,2003(03):993-1022.
[18] 王晰巍,刘宇桐,李玥琪.突发公共卫生事件中公民隐私泄露舆情的情感演化图谱研究[J].情报理论与实践,2022,45(03):19-27.
[19] 王家辉,夏志杰,王诣铭,等.基于句法规则和社会网络分析的网络舆情热点主题可视化及演化研究[J].情报科学,2020,38(07):132-139.
[20] 岳丽欣,刘自强,胡正银.面向趋势预测的热点主题演化分析方法研究[J].数据分析与知识发现,2020,4(06):22-34.
[21] 李乾瑞,郭俊芳,黄颖,等.基于突变-融合视角的颠覆性技术主题演化研究[J].科学学研究,2021,39(12):2129-2139.
[22] 杨恒,王曰芬,张露.基于核心专利技术主题识别与演化分析的技术预测[J].情报杂志,2022,41(07):49-56.
[23] 陈伟,林超然,李金秋,等.基于LDA-HMM的专利技术主题演化趋势分析:以船用柴油机技术为例[J].情报学报,2018,37(07):732-741.
[24] 刘自强,王效岳,白如江.多维度视角下学科主题演化可视化分析方法研究:以我国图书情报领域大数据研究为例[J].中国图书馆学报,2016,42(06):67-84.
[25] 隗玲,许海云,胡正银,等.学科主题演化路径的多模式识别与预测:一个情报学学科主题演化案例[J].图书情报工作,2016,60(13):71-81.
[26] 徐红姣,曾文,张运良.基于Word2vec的论文和专利主题关联演化分析方法研究[J].情报杂志,2018,37(12):36-42.
[27] 颜端武,梅喜瑞,杨雄飞,等.基于主题模型和词向量融合的微博文本主题聚类研究[J].现代情报,2021,41(10):67-74.
[28] 李贺,曹阳,沈旺,等.基于LDA主题识别与Kano模型分析的用户需求研究[J].情报科学,2021,39(08):3-11,36.
[29] 马建红,王晨曦,闫林,等.基于产品生命周期的专利技术主题演化分析[J].情报学报,2022,41(07):684-691.
[30] 谭文君,董桂才,张斌儒.我国工业机器人行业的发展现状及启示[J].宏观经济管理,2018(04):42-47.