•  
  •  
 

Scientific Information Research

Keywords

interdisciplinary knowledge; National Natural Science Foundation; knowledge growth path; interdisciplinary measurement indicators

Abstract

[Purpose/significance]In the application for NSFC projects, the same scholar uses different fund codes at different times, which promotes the integration and growth of interdisciplinary knowledge to a certain extent. Therefore, based on the interdisciplinary application for the National Natural Science Foundation of China, this paper explores interdisciplinary knowledge and its integrated growth path. [Method/process]The interdisciplinary measurement indicators were improved and optimized based on the hierarchical structure of NSFC discipline application code to identify the most interdisciplinary knowledge. Subsequently, a type of heterogeneous network of interdisciplinary knowledge and first-level disciplines was constructed, and interdisciplinary knowledge community discovery and growth path mining were realized based on RankClus. [Result/conclusion]Through research, it is found that there are 12 significant interdisciplinary knowledge clusters and 6 obvious interdisciplinary knowledge growth paths. Their interdisciplinary knowledge paths are Life Science-Medical Science (C-H), Chemical Science-Engineering and Materials Science (B-E), Life Science-Earth Science(C-D), Mathematical and Physical Science-Information Science-Management Science(A-F-G), Mathematical and Physical Science-Earth Science-Engineering and Materials Science (A-D-E),Chemical Science-Management Science(B-G).

First Page

58

Reference

[1] 中华人民共和国教育部.关于高等学校加快“双一流”建设的指导意见[EB/OL].(2018-08-27)[2023-11-05].http://www.moe.gov.cn/srcsite/A22/moe_843/201808/t20180823_345987.html. [2] 曹树金,曹茹烨.基于知识图谱支持科研创新的跨学科知识发现研究[J].情报理论与实践,2022,45(11):10-20. [3] WU J,JIN M,DING X H.Diversity of individual research disciplines in scientific funding[J].Scientometrics:An International Journal for All Quantitative Aspects of the Science of Science Policy,2015,103(02):669-686. [4] 吴江,金妙.基于基金代码共现的学科知识流动网络研究[J].情报杂志,2016,35(06):23-28. [5] 樊红侠.知识发现及其在数字图书馆的应用[J].现代情报,2008(08):90-92. [6] 章成志,吴小兰.跨学科研究综述[J].情报学报,2017,36(05):523-535. [7] 路甬祥.学科交叉与交叉科学的意义[J].中国科学院院刊,2005,20(01):58-60. [8] 李佳蕾,安培浚,肖仙桃.学科交叉主题识别方法研究综述[J].数据分析与知识发现,2023,7(04):1-15. [9] CHI R,YOUNG J.The interdisciplinary structure of research on intercultural relations:A co-citation network analysis study[J].Scientometrics,2013(96):147-171. [10] WANG Q.Measuring Interdisciplinarity of a Given Body of Research[C]//The 10th International Conference of the International Society for Scientometrics and Informetrics.Leuven,Leuven University Press,2015:372-383. [11] 闵超,孙建军.基于关键词交集的学科交叉研究热点分析:以图书情报学和新闻传播学为例[J].情报杂志,2014,33(05):76-82. [12] XU H,GUO T,YUE Z,et al.Interdisciplinary topics of information science:a study based on the terms interdisciplinarity index series[J].Scientometrics:An International Journal for All Quantitative Aspects of the Science of Science Policy,2016,106(02):583-601. [13] ABRAMO G,D'ANGELO C A,COSTA D F.Identifying interdisciplinarity through the disciplinary classification of coauthors of scientific publications[J].Journal of the American Society for Information Science and Technology,2012,63(11):2206-2222. [14] HE B,DDING Y,TANG J,et al.Mining diversity subgraph in multidisciplinary scientific collaboration networks:A meso perspective[J].Journal of Informetrics,2013,7(01):117-128. [15] 韩正琪,刘小平,寇晶晶.基于Rao-Stirling指数和LDA模型的领域学科交叉主题识别:以纳米科技为例[J].情报科学,2020,38(02):116-124. [16] 阮光册,夏磊.学科间交叉研究主题识别:以图书情报学与教育学为例[J].情报科学,2020,38(12):152-157. [17] SMALL.Maps of science as interdisciplinary discourse:co-citation contexts and the role of analogy[J].Scientometrics:An International Journal for All Quantitative Aspects of the Science of Science Policy,2010,83(03):835-849. [18] 章成志,徐庶睿,卢超.利用引文内容监测多学科交叉现象的方法与实证[J].图书情报工作,2016,60(19):108-115. [19] 杜德慧,李长玲,相富钟,等.基于引文关键词的跨学科相关知识发现方法探讨[J].情报杂志,2020,39(09):189-194. [20] 徐璐,李长玲,王浩,等.基于当采中间人的跨学科相关知识组合识别:以图书情报领域为例[J].情报理论与实践,2023,46(10):115-120,106. [21] 周娜,李秀霞,高丹.基于LDA主题模型的“作者—内容—方法”多重共现分析:以图书情报学为例[J].情报理论与实践,2019,42(06):144-148,123. [22] 张振刚,罗泰晔.基于知识组合理论的技术机会发现[J].科研管理,2020,41(08):220-228. [23] 牌艳欣,李长玲,徐璐.弱引文关系视角下跨学科相关知识组合识别方法探讨:以情报学为例[J].图书情报工作,2020,64(21):111-119. [24] 李长玲,高峰,牌艳欣.试论跨学科潜在知识生长点及其识别方法[J].科学学研究,2021,39(06):1007-1014. [25] 荣国阳,李长玲,范晴晴,等.基于生命周期理论的跨学科知识生长点识别:以引文分析领域为例[J].情报理论与实践,2022,45(06):9-16. [26] 李长玲,范晴晴,荣国阳,等.动能理论视角下跨学科知识生长点成长态势分析:以图书情报领域为例[J].情报理论与实践,2023,46(03):9-15. [27] SWANSON D R.Fish Oil,Raynaud's Syndrome,and Undiscovered Public Knowledge[J].Perspectives in Biology & Medicine,1986,30(01):7-18. [28] GIANNETTI F.‘So near while apart’:Correspondence Editions as Critical Library Pedagogy and Digital Humanities Methodology[J].The Journal of Academic Librarianship,2019,45(05):102033. [29] 黄水清,程冲,李志燕.开放式非相关文献知识发现方法在中文文献中的验证[J].情报理论与实践,2008(02):246-250. [30] 李勇,冷伏海,王林.基于非相关文献的三阶知识发现方法探讨[J].中国图书馆学报,2011,37(04):21-26,69. [31] 王忠义,彭思源,夏立新.跨学科知识组织的概念关联研究[J].中国图书馆学报,2022,48(03):43-62. [32] 吴小兰,章成志.国家自然科学基金视角下学科跨学科性演变研究[J].科技情报研究,2022,4(03):20-32. [33] SUN Y,HAN J,ZHAO P,et al.Rankclus:integrating clustering with ranking for heterogeneous information network analysis[C]//Proceedings of the 12th International Conference on Extending Database Technology:Advances in Database Technology,2009:565-576.

Share

COinS