Scientific Information Research
Keywords
online public opinion; sentiment analysis; judicial texts; drug crimes; responsive legislation
Abstract
[Purpose/significance]Drug safety has a significant responsibility and is related to people's life and health. Through the network public opinion of typical drug safety incidents, judicial data of drug crime system, and evidence of actual legislative adjustment, the evolution law between public opinion, justice and legislation was explored.[Method/process]Taking the case of Lu Yong purchasing anti-cancer drugs and the case of Changchun Changsheng fake vaccine as examples, the public opinion data related to the events on Sina Weibo were extracted, and the SnowNLP method, integrated model based on logistic regression model (LR) and gradient lifting decision Tree (GBDT) were used to conduct quantitative research on the emotional characteristics and content characteristics of public opinion. At the same time, the effective judgment of the first instance of drug crimes was collected, and the big data information of judicial text was extracted by using ChatGLM and ERNIE 3.0 pre-trained language model. The above "public opinion - judicial" big data analysis results are integrated and docking, and the impact of online public opinion on judicial practice and legislation is analyzed. [Result/conclusion] In drug safety incidents, there is a trend that public opinion takes the lead in affecting judicial adjustment, and then judicial practice promotes legislative response, showing the law of evolution of "public opinion, judicature and legislation".
First Page
111
Last Page
126
Digital Object Identifier (DOI)
10.19809/j.cnki.kjqbyj.2024.03.009
Recommended Citation
GUO, Tianyu; ZHAO, Shulin; LI, Zheng; HAO, Jie; and JIA, Siyao
(2024)
"Research on the Influence of Network Public Opinion on Criminal Legislation in Major Drug Safety Events,"
Scientific Information Research: Vol. 6:
Iss.
3, Article 9.
DOI: 10.19809/j.cnki.kjqbyj.2024.03.009
Available at:
https://eng.kjqbyj.com/journal/vol6/iss3/9
Reference
[1] 黄晓斌,赵超.文本挖掘在网络舆情信息分析中的应用[J].情报科学,2009,27(01):94-99.
[2] 郑越,秦阳阳,施永辉,等.网络舆情研究现状分析[J].工业控制计算机,2023,36(07):100-102.
[3] 张晨逸,孙建伶,丁轶群.基于MB-LDA模型的微博主题挖掘[J].计算机研究与发展,2011,48(10):1795-1802.
[4] 唐晓波,王洪艳.基于潜在狄利克雷分配模型的微博主题演化分析[J].情报学报,2013,32(03):281-287.
[5] ZHU HM,MEI Y,WEI J,et al.Prediction of online topics’popularity patterns[J].Journal of Information Science,2022,48(02):141-151.
[6] LIU DL,ZHANG H,YU H,et al.Research on Network Public Opinion Analysis and Monitor Method Based on Data Technology[C]//2020 IEEE 10th International Conference on Electronics Information and Emergency Communication,2020:195-199.
[7] KEELAN J,PAVRI V,BALAKRISHNAN R,et al.An Analysis of The Human Papilloma Virus Vaccine Debate on MySpace Blogs[J].Vaccine,2010,28(06):1535-1540.
[8] 李海磊,杨文忠,李东昊,等.基于特征融合的K-means微博话题发现模型[J].电子技术应用,2020,46(04):24-28,33.
[9] 邱全磊,崔宗敏,喻静.基于表情和语气的情感词典用于弹幕情感分析[J].计算机技术与发展,2020,30(08):178-182.
[10] 周知,王春迎,朱佳丽.基于超短评论的图书领域情感词典构建研究[J].情报理论与实践,2021,44(09):183-189,197.
[11] CHI W.Network Public Opinion Analysis Based on Text Mining[J].International Joural of Science and Mathematics Education,2018,5(01):291-299.
[12] 崔彦琛,张鹏,兰月新,等.消防突发事件网络舆情情感词典构建研究[J].情报杂志,2018,37(10):154-160.
[13] 尚永敏,赵榆琴.基于机器学习的在线评论情感分析与实现[J].大理大学学报,2021,6(12):80-86.
[14] 李锦,夏鸿斌,刘渊.基于BERT的双特征融合注意力的方面情感分析模型[J].计算机科学与探索,2024,18(01):205-216.
[15] 王丽亚,刘昌辉,蔡敦波,等.CNN-BiGRU网络中引入注意力机制的中文文本情感分析[J].计算机应用,2019,39(10):2841-2846.
[16] 石磊,张鑫倩,陶永才,等.结合自注意力机制和Tree-LSTM的情感分析模型[J].小型微型计算机系统,2019,40(07):1486-1490.
[17] 邓矜婷,张建悦.计算法学:作为一种新的法学研究方法[J].法学,2019(04):104-122.
[18] MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[J/OL].(2013-09-07).http://www.arxiv.org/pdf/1301.3781.pdf.
[19] RADFORD A,NARASIMHAN K,SALIMANS T,et al.Improving language understanding by generative pre-training[J/OL].[2023-03-01].https://queirozf.com/entries/paper-summary-improving-language-understanding-by-generative-pre-training.
[20] DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[J/OL].(2019-05-24).https://arxiv.org/pdf/1810.04805.pdf.
[21] LU Y,LIU Q,DAI D,et al.Unified structure generation for universal information extraction[J].arXiv preprint arXiv,2022:2203,12277.
[22] STEPHEN M.F.Juveniles in adult criminal court:Legal and extra-legal factors influencing New Orleanians' attitudes toward the treatment of juvenile offenders[D].New Orleans:Tulane University,1995.
[23] RIVERA M U.Immigration,Public Opinion,and State Policy Responsiveness[D].Caliyornia:University of California,2014.
[24] 王怡.认真对待公众舆论:从公众参与走向立法商谈[J].政法论坛,2019,37(06):75-86.
[25] 朱笑延.舆论与刑法的偏差式互动:刑事责任年龄个别下调的中国叙事[J].法学家,2022,(01):68-83,193.
[26] 李奋飞.舆论场内的司法自洽性研究:以李昌奎案的模拟实验分析为介质[J].中国法学,2016(01):269-288.
[27] 李德胜.从舆论热点案件看刑法解释的价值决断[J].国家检察官学院学报,2020,28(05):114-128.
[28] 许安标.《药品管理法》修改的精神要义、创新与发展[J].行政法学研究,2020(01):3-16.
[29] 喻海松.《刑法修正案(十一)》后时代药品犯罪圈的重置[J].法学,2023(02):62-76.
[30] 陈芹.为病患代购管制药品的情与法冲突及化解路径[J].医学与哲学,2023,44(08):48-52.
[31] 梅传强.危害药品安全犯罪的最新修订及其适用研究[J].当代法学,2021,35(05):3-14.
[32] 赵妍妍,秦兵,刘挺.文本情感分析[J].软件学报,2010,21(08):1834-1848.
[33] 张冬,魏俊斌.情感驱动下主流媒体疫情信息数据分析与话语引导策略[J].图书情报工作,2021,65(14):101-108.
[34] 胡云腾.最高人民法院刑事诉讼文书样式:制作规范与法律依据(2020年第1版)[M].北京:人民法院出版社,2020:5.
[35] DU Z,QIAN Y,LIU X,et al.Glm:General language model pretraining with autoregressive blank infilling[J/OL].(2022-12-18).https://ar5iv.labs.arxiv.org/html/2103.10360.
[36] AOHAN Z,XIAO L,ZHENGXIAO D,et al.Glm-130b:An open bilingual pre-trained model[J/OL].(2022-08-04).https://keg.cs.tsinghua.edu.cn/glm-130b/.
[37] 中国政府网.公安部公布2015年打击食药犯罪十大典型案例[EB/OL].(2016-02-05) [2023-11-15].https://www.gov.cn/xinwen/2016-02/05/content_5039459.htm.